If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2-4=96
We move all terms to the left:
4b^2-4-(96)=0
We add all the numbers together, and all the variables
4b^2-100=0
a = 4; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·4·(-100)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*4}=\frac{-40}{8} =-5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*4}=\frac{40}{8} =5 $
| 1478=x^2+3x | | (3/5*3)+x=8 | | 0=24x^2-54 | | X*x*2x=300 | | m+2.8=1.3. | | 3/5*5+x=8 | | 9x-5=12x+25 | | x²+0.75x=x-1 | | 2(x+3)=75 | | -7/2u+7/2=-3u-1/5 | | 3m2=102 | | y=3y-28 | | 2^x-1=7 | | 6/4x+2/3x=1 | | (3y+1)(4y+3)=106 | | 9k+20=74 | | y=3y-38 | | 3/7(21x-14)=8x | | x=8+2/5 | | 5x-35=7x-57 | | f(20)=2(20)–23 | | 1/2=-4/3x-2/5 | | 5s+6=7s-9 | | 4x^2+16x+4=2 | | 12y^2+13y-103=0 | | 4s+64=18s+94 | | 3x+27=6x+175 | | 15p=11p+12 | | n/2-3=-2 | | 9x+8=3(x-2) | | 27y+(-18)-9y=2y-2-8 | | u7= 6 |